The Metastatistical Extreme Value Distribution
dmev.Rd
Density, distribution function, quantile function and random generation for the MEV distribution with shape parameter 'w', scale parameter 'c'. Parameter 'n' refers either to the mean number of wet days per year in case of the simplified MEV, or to the number of wet days for each year.
Arguments
- x, q
numeric vector or single values of quantiles for
dmev
andpmev
.- w, c
vector or single values of shape and scale parameter of the MEV distribution. If a vector, w and c must have the same length as n.
- n
Either mean number of wet events per year for the SMEV, or a vector for yearly MEVD calculations, i.e. one value per year (see details). If a vector, n must have the same length as w and c.
- p
vector or single value of probabilities for
qmev
.- N
Number of observations to sample from the MEVD or SMEV.
Value
dmev
gives the density function, pmev
gives the distribution function,
qmev
gives the quantile function and rmev
provides random realizations of
the SMEV and MEVD.
Functions
pmev()
: distribution quantile functionqmev()
: quantile functionrmev()
: random generation function
Examples
# SMEV
dmev(1200:1300, 0.7, 20, 110)
#> [1] 2.646170e-08 2.618540e-08 2.591207e-08 2.564165e-08 2.537413e-08
#> [6] 2.510947e-08 2.484764e-08 2.458860e-08 2.433233e-08 2.407880e-08
#> [11] 2.382798e-08 2.357983e-08 2.333434e-08 2.309146e-08 2.285117e-08
#> [16] 2.261344e-08 2.237825e-08 2.214556e-08 2.191536e-08 2.168760e-08
#> [21] 2.146227e-08 2.123934e-08 2.101878e-08 2.080057e-08 2.058468e-08
#> [26] 2.037108e-08 2.015976e-08 1.995068e-08 1.974382e-08 1.953916e-08
#> [31] 1.933667e-08 1.913634e-08 1.893812e-08 1.874202e-08 1.854799e-08
#> [36] 1.835602e-08 1.816608e-08 1.797816e-08 1.779223e-08 1.760827e-08
#> [41] 1.742626e-08 1.724618e-08 1.706800e-08 1.689170e-08 1.671727e-08
#> [46] 1.654469e-08 1.637393e-08 1.620498e-08 1.603781e-08 1.587241e-08
#> [51] 1.570875e-08 1.554683e-08 1.538661e-08 1.522808e-08 1.507123e-08
#> [56] 1.491603e-08 1.476247e-08 1.461052e-08 1.446018e-08 1.431142e-08
#> [61] 1.416423e-08 1.401859e-08 1.387449e-08 1.373190e-08 1.359081e-08
#> [66] 1.345120e-08 1.331307e-08 1.317638e-08 1.304113e-08 1.290731e-08
#> [71] 1.277489e-08 1.264386e-08 1.251421e-08 1.238591e-08 1.225897e-08
#> [76] 1.213336e-08 1.200906e-08 1.188607e-08 1.176437e-08 1.164394e-08
#> [81] 1.152478e-08 1.140686e-08 1.129018e-08 1.117472e-08 1.106047e-08
#> [86] 1.094742e-08 1.083555e-08 1.072484e-08 1.061530e-08 1.050690e-08
#> [91] 1.039964e-08 1.029349e-08 1.018846e-08 1.008452e-08 9.981668e-09
#> [96] 9.879889e-09 9.779172e-09 9.679506e-09 9.580880e-09 9.483282e-09
#> [101] 9.386702e-09
pmev(1200:1300, 0.7, 70, 110)
#> [1] 0.9289803 0.9292715 0.9295616 0.9298504 0.9301380 0.9304244 0.9307096
#> [8] 0.9309937 0.9312765 0.9315581 0.9318386 0.9321179 0.9323960 0.9326729
#> [15] 0.9329487 0.9332233 0.9334968 0.9337691 0.9340403 0.9343103 0.9345792
#> [22] 0.9348470 0.9351137 0.9353792 0.9356437 0.9359070 0.9361692 0.9364303
#> [29] 0.9366903 0.9369492 0.9372071 0.9374638 0.9377195 0.9379741 0.9382277
#> [36] 0.9384801 0.9387316 0.9389819 0.9392312 0.9394795 0.9397267 0.9399729
#> [43] 0.9402181 0.9404622 0.9407053 0.9409474 0.9411885 0.9414285 0.9416676
#> [50] 0.9419056 0.9421427 0.9423787 0.9426138 0.9428479 0.9430810 0.9433131
#> [57] 0.9435442 0.9437744 0.9440036 0.9442319 0.9444592 0.9446855 0.9449109
#> [64] 0.9451354 0.9453589 0.9455814 0.9458031 0.9460238 0.9462436 0.9464624
#> [71] 0.9466804 0.9468974 0.9471135 0.9473287 0.9475430 0.9477565 0.9479690
#> [78] 0.9481806 0.9483913 0.9486012 0.9488102 0.9490183 0.9492255 0.9494319
#> [85] 0.9496374 0.9498420 0.9500458 0.9502487 0.9504508 0.9506521 0.9508524
#> [92] 0.9510520 0.9512507 0.9514486 0.9516456 0.9518419 0.9520373 0.9522319
#> [99] 0.9524256 0.9526186 0.9528108
qmev(1 - 1 / seq(5,50,5), 0.7, 70, 110)
#> [1] 948.9202 1116.9967 1215.4018 1285.7748 1340.7865 1386.0482 1424.5527
#> [8] 1458.0898 1487.8169 1514.5267
# MEVD: 50-year event of 10 years Weibull series
w <- rnorm(10, 0.8, 0.1) # shape parameter
c <- rnorm(10, 200, 30) # scale parameter
n <- rnorm(10, 200, 50) # number of wet days
qmev(1 - 1 / 50, w, c, n)
#> [1] 4917.247
# rl-plot
rp <- seq(5, 50, 5)
rl <- qmev(1 - 1 / rp, w, c, n)
pp <- (1:length(rp)) / (length(rp) + 1)
plot(pp, rl, type = "o")